Breaking News

Uncovering the Oil Industry’s Radioactive Secret (Part 3): The Industry Has Known

Print Friendly, PDF & Email

On 1 August 2000, Keith MacDonald was called out to check the Thayyem-107 well in Syria. It would be a fateful job. A radioactivity inspection was conducted at the well and the numbers were off the charts.  The report indicated readings at the wellhead for beta particles – a type of radioactivity that can pass through the skin and cause genetic mutations and cellular damage that leads to cancer – of 6,336 counts per second, an astonishing 1,584 times background levels.

“I asked the Syrian workers if they knew there was radiation there and they looked at me like I had just landed from Mars,” says MacDonald. He had the impression that “it was obvious they were being kept in the dark.”

In 2020, Justin Nobel wrote an article detailing what happened that fateful day, the personal tragedy that ensued, and the steps MacDonald had taken, without success, to hold those responsible accountable. As Nobel’s article is longer than most would read in one sitting, we are republishing it in sections in a four-part series.  This article is the third part. You can read Part 1 HERE and Nobel’s full article HERE.

Let’s not lose touch…Your Government and Big Tech are actively trying to censor the information reported by The Exposé to serve their own needs. Subscribe now to make sure you receive the latest uncensored news in your inbox…

By Justin Nobel, republished from DeSmog

The industry has known

Nearly everyone on earth uses oil and gas products. But most people are completely unaware that oil and gas production brings large amounts of radioactivity to the surface.

The first scientific record comes from a 1904 paper by a University of Toronto researcher who examined crude oil from a well in a farmer’s field in southern Ontario. He discovered a radioactive gas we now know to be radon, which is currently pegged by the US Environmental Protection Agency (EPA) as the second leading cause of lung cancer in the United States. Radon is just one of many radioactive elements oil and gas bring to the surface. “The presence of these naturally occurring radionuclides in petroleum reservoirs,” states a 1991 EPA report, has actually been used, “as one of the methods for finding hydrocarbons.” 

Much of the radioactivity brought to the surface in oil and gas production is part of a salty toxic stream of liquid the industry calls brine or produced water. Most oil wells produce far more brine than oil, and some wells can produce 10 times as much. Geologists have long known that the radioactive element radium, peppered throughout earth’s layers and moderately soluble, flows with brine to the surface. “We have created a transit system for taking radioactivity from underground,” says Kaltofen, the US nuclear forensic scientist, “bringing it up to the biosphere where it can interact with people and the environment.”

Because radium accumulates in oilfield piping — part of a difficult to remove deposit called “scale” — and sludge at the bottom of tanks, certain workers can become coated in radium-laden waste. The radioactive element can also easily be made airborne with dust, and accidentally ingested or inhaled. The US EPA has reported that each oil well generates approximately 100 tons of scale annually and that conventional oil production alone produces 230,000 metric tons of radioactive sludge a year.

In the United States, because of exemptions written in 1980 by a pair of Democratic Congressmen, this hazardous waste, which according to the US EPA contains not just potentially concerning levels of radioactivity but also potentially concerning levels of carcinogens like benzene and toxic heavy metals like lead and arsenic, has been deemed “non-hazardous.” This means it can be disposed of in landfills intended to hold household garbage. There is little easily accessible information available on just where the rest of the world’s massive amounts of radioactive oil and gas waste ends up.

A 2005 report of the Norwegian Radiation Protection Authority reveals it has been standard practice in the North Sea oilfields to dump toxic radium-laden brine into the ocean. While the report indicates that in most areas background levels of radium would not change, “in limited areas in the northern North Sea, a doubling of the activity concentration … could be encountered.”

Much of this radioactivity is transported towards the Norwegian coast, the report notes. “To place this into context,” states a 2016 report of the International Association of Oil & Gas Producers (IOGP), co-authored by retired Shell radiation expert Gert Jonkers, the North Sea oil industry’s emissions, by one measure of radioactivity, “are forty times those reported by the nuclear energy sector.”

While today the oil and gas industry does not talk openly about the risks radioactivity poses to their workers, they once did. “The presence of natural radioactivity in oil and gas fields has been recognised worldwide,” states a 1987 document from the UK Offshore Operators Association, a leading trade association for the UK’s oil and gas industry.

Shell is aware of the issue too. The company’s own documents reveal that the oil and gas giant has known for 70 years that various exposures from oil and gas work, including exposure to radioactive materials, can lead to cancer.

“Human contacts with soot, carbon black, pitch, asphalt, crude petroleum, shale oil, paraffin oil, lubricating and fuel oil, anthracene oil and other distillations and fractionation products of coal and petroleum apparently cause the majority of environmental cancers in man,” states a 1950 report produced by a toxicologist working at Emeryville Research Centre, a bygone Shell lab in California. Substances like “arsenic” and “radio-active elements” are unique, the report notes, as they have “established carcinogenic qualities” for which the “origin of environmental cancer” can actually “be traced”.

Image: Opening pages of the Emeryville Research Centre report (1950).

More recent documents from Shell indicate that through the fracking boom of the 2000s, knowledge of the risks of radioactivity has not been lost. In fact, Gert Jonkers, the retired Shell radiation expert, has authored or co-authored half a dozen papers on the topic.

“The encounter of Naturally Occurring Radioactive Material (NORM) is of increasing concern for the oil and gas industry, not only because of radiological safety aspects but also from an environmental point of view,” states one 1997 article, published in the American Petroleum Institute. Another paper discusses how NORM “is often encountered during gas and oil production” and “gives rise to increased health hazards to personnel.”

The 2016 report on radioactivity that Jonkers co-authored for the International Association of Oil & Gas Producers serves as an informative field guide to these hazards. “There are two ways in which personnel can be exposed to radiation,” the report states, “irradiation from external sources and contamination from inhaled and ingested sources.”

An accompanying diagram features an oil and gas worker standing above an open pipe spewing radioactivity, a hauntingly similar version of the situation MacDonald found himself in at Thayyem-107. While radioactivity can damage the skin, breathing or ingesting dust allows the hitchhiker radioactive elements, or radionuclides, to enter our bodies, where they may lodge in the lung or gut and continue their radioactive decay, leading to the “irradiation of tissues and organs.”

Image: Diagram of NORM exposure from the International Association of Oil & Gas Producers report.

But while Shell scientists may be schooled on the matter, workers like MacDonald, labouring in the company’s gritty and far-flung oil and gas fields, appear to be left to fend for themselves. And the company does not seem willing to fill in the blanks.

“While the risk of exposure to radioactive elements in some phases of our operations is low,” Shell spokesperson Curtis Smith replied to me in early January, “Shell has strict, well-developed safety procedures in place to monitor for radioactivity as well as a comprehensive list of safety protocols should radioactivity be detected.”

When pressed in March on the details of these safety procedures, and the commonness of a case like MacDonald’s, Smith replied, “unfortunately, all of our resources are dedicated to current/fluid events related to the COVID-19 outbreak. As a result, I won’t have the time to revisit this topic with you.” When pressed again in April regarding the specifics of MacDonald’s case, including a copy of the Thayyem-107 radiological report, Smith replied with the following statement:

“Safety is a top priority in all our operations and we take seriously any allegations that our operating companies might have a negative impact on employees, contractors or local communities. However, since Shell is not the operator in Syria but a minority shareholder in Al Furat Petroleum Company (AFPC), we do not hold nor have access to any operational level data owned by AFPC which can substantiate these claims.”

Andrew Gross, a US-based Radiation Control Consultant who for years ran a business cleaning up the oil and gas industry’s radioactive waste, and now works as an independent consultant, has little doubt where the buck stops.

“These companies will pretend they are ignorant but you got to remember these are corporations, and Shell or whoever it is has one purpose in life, to maximise profits,” says Gross. “If you are a worker, that is something important to understand,” he adds. “These guys need to know that they have to take care of themselves.”

Regulatory failures

MacDonald has been trying to get someone to take his story seriously for 20 years.

One of many legal firms he contacted was Thompsons Solicitors, headquartered in London. A June 2018 letter from attorney Stephen Ireland conveys an acknowledgement of the situation MacDonald encountered at Thayyem-107. “You believe that as a consequence of this exposure, you have developed a psychiatric/psychological disorder and skin lesions” the letter stated. But Ireland’s letter also noted that MacDonald’s legal claim was far from certain.

In fact, according to Dr Andrew Watterson, an occupational and environmental health researcher at the University of Stirling in Scotland, it is exceptionally difficult to get compensation. “The government’s workplace compensation scheme is an unholy mess,” he states in a 2015 article he co-wrote for Hazards Magazine. For workers to receive compensation they must usually show their illness is twice as likely to occur in their profession as compared to the general population. This is an “all-or-usually-nothing conservative epidemiology,” writes Watterson, “designed to give as many victims as possible a big fat zero.”

Watterson said he was not aware of a single worker case on oilfield radioactivity being brought before courts in the UK. There is a “lack of awareness” on the issue, he says, which means there are no detailed scientific studies and no case law to build from. But the primary problem in his opinion lies with “toothless” health and safety regulators. “In the UK, we have a vicious circle on occupational cancers,” says Watterson. “Don’t look, don’t find, no problem.”

When DeSmog asked the Health and Safety Executive, the UK agency responsible for regulation and enforcement of workplace health and safety, if it had ever assessed oil and gas worker cancers to determine whether or not a link could be drawn to occupational radioactivity exposures, an HSE spokesperson told DeSmog: “There have been numerous epidemiological studies into radiation exposure within the UK over the last 70 years but as far as I am aware there is nothing at present within the UK oil and gas [industry].”

Other aspects of HSE’s radioactivity policy convey that for the oil and gas industry, regulations largely rely not on government regulators, but on self-enforcement. In the agency’s 176-page Approved Code of Practice and Guidance for Work with Ionising Radiation, there is just one fleeting reference to the oil and gas industry. An HSE document entitled Offshore Radiation Essentials states to the industry: “Following the guidance is not compulsory and you are free to take other action.” HSE told DeSmog, “the protection of workers is the responsibility of the companies.”

Part of the problem is a trend in countries such as the US and UK toward deregulation, and the weakening of environmental laws and the regulatory agencies that enforce them. In recent decades, the Conservative-led governments have cut funding for the Health and Safety Executive, and the previous Labour government neglected its funding. “There is an ideological commitment to cutting red tape, then there is the practical act of cutting staff and regulators,” explains Watterson. “It goes back to [Conservative Prime Minister Margaret] Thatcher, she wanted to see softer regulation in the UK, and that was picked up by [Labour Prime Ministers] Blair and Brown.”

There is a sign of hope for workers like MacDonald. A court case settled in 2016 in the state of Louisiana, in the heart of America’s conventional oil and gas patch, reveals that dozens of workers working a variety of common industry jobs such as roughneck, roustabout, pipe cleaner and truck driver developed cancer.

A report written by radiation experts uses an analysis program created by the US Centres for Disease Control and Prevention to link these workers’ cancers to radioactivity exposures received on the job. Cancers the workers developed include non-Hodgkin’s lymphoma, various leukaemia, colon cancer and liver cancer, among others.

“These men are guinea pigs,” says Stuart Smith, the New Orleans-based attorney who tried the cases, and was the first attorney to try oil-field radiation cases. “I have litigated several cases that showed that oilfield waste caused cancer,” he says. “All the big majors have known about this for many decades. The regulators are obviously aware of it too, it’s just that they don’t have the political cojones to do anything about it.”

About the Author

Justin Nobel writes on issues of science and the environment for Rolling Stone, DeSmog and various other publications. During the years 2017 to 2020, Nobel was reporting on oil and gas development across the US whilst also researching and authoring a book on oil and gas radioactivity. Our article above is extracted from a 2020 article written by Nobel and published by DeSmog titled ‘The Syrian Job: Uncovering the Oil Industry’s Radioactive Secret’.

Share this page to Telegram

Categories: Breaking News, World News

Tagged as:

5 1 vote
Article Rating
Notify of
Inline Feedbacks
View all comments
1 year ago

[…] Source link […]

1 year ago

[…] Go to Source Follow on Telegram […]

Bob - Enough
Bob - Enough
1 year ago

Excellent and informative article and much appreciated … although too late for me. Worked in Syria in Deir Ez Zor on the fields; do not think this one specifically and ended up years later with some strange cancer – NPC … behind my nose blah blah.

If you have ever been there when they have opened up a separator vessel for example, you cannot explain the vile mess that has coated the inside- sometimes just like tar – it is revolting; but this is the first time in my 30 plus years in the industry, I have heard that it could be ruddy radioactive – which makes me look like a fool, as I have reviewed hundreds of chemical analyses of the water, oil, gas and solids and never put 2 + 2 together…

PS I would like to just note that whilst the UK Government tries to de-regulate HSE – in the North Sea at least, HSE is second to none and paramount … UNLESS the Yanks are involved.

1 year ago

No surprise that it was two “Democrat” congressmen who signed that bill allowing the practice of moving waste to landfill.